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Briggs, Newell and Sarie (J. Comput. Phys. 51. 83 (1983)) have discussed a mechanism for
the destabilisation of finite difference approximations to nonlinear partial differential
equations. Their ideas were developed using the leap-frog approximation to the advection
equation. Here the same situation is examined in a manner which compares the basic solution
to a periodic wavetrain. An investigation is made into the stability of the basic solution to
small disturbances which take the form of side-band Fourier modes. The relation between
side-band growth and envelope modulation is discussed. T 1986 Academic Press, lnc.

1. INTRODUCTION

A recent paper by Briggs, Newell and Sarie [3] described a focusing mechanism
for the destabilisation of nonlinear partial difference equations. The authors
correctly drew attention to the fact that little work has been done on analysing
instabilities in nonlinear difference equations in the way that fluid dynamicists have
analysed the instabilities associated with transition to turbulence. Briggs ef al. con-
fined their attention to leap-frog discretisations of the quasi-linear equation

u,+uu,=0 (1.1)

and they described a mechanism for the triggering of nonlinear instabilities. This

mechanism is related to that which causes the disintegration of wavetrains on deep

water, [irst suggested by Lighthill [7] and subsequently analysed in a classic paper

by Benjamin and Feir [2]. The aim of this note is to supplement the interesting

work of Briggs et al. by examining the same situation using methods related to

those adopted by Benjamin and Feir [2]. It is important that appropriate com-
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NONLINEAR INSTABILITIES IN LEAP-FROG

parisons be made between instabilities in difference equations and instabilities in
periodic wavetrains in fluids in order that maximum use might be made of the
extensive literature in this latter area. The Benjamin and Feir approach has been
used profitably to study instabilities in nonlinear, dispersive, differential systems by,
inter alios, Yuen and Ferguson [12], Fornberg and Whitham [5] and Herbst.
Mitchell and Weideman [6].

Suppose (1.1) has to be solved in the region 0 <x <1 and that the equation 15
discretised in space using a grid size A= 1/J, where J is an even integer. Since the
grid cannot resolve wavelengths smaller than 24 it follows that a Fourier mode
exp(2rijp/J), j=0, L., J, satisfies the constraint |p| <J/2. If quadratic nonlinear
interactions give rise to a mode exp(2nijg/J), with J2<g¢<J, the mode is
incorrectly represented as exp(2mif(g —J)/J). This misinterpretation of Fourier
modes in discrete systems is referred to as aliasing. An examination of quadratic
interactions of Fourier modes, with attention paid to the aliasing property, enables
one to represent exactly the semi-discrete form of (1.1) in terms of a system of
ordinary differential equations describing the variation in time of a small number,
say N, of Fourier coefficients. Briggs er al. produced exact representations involving
one, two, three and four Fourier modes, and each of these is exact in the sense that
no additional Fourier modes are introduced to the system by nonlinear interac-
tions. It is convenient here to regard the lowest wave number occurring ih any orne
of these representations as the analogue of the fundamental wave number in the
periodic wavetrain considered by Benjamin and Feir [2].

If solutions of (1.1) are considered which are perturbations about a constant state
characterised by a parameter o and if the initial energy in the perturbation is
characterised by a parameter E, it is possible to find regions in {#, £) space within
which the leap-frog solution of the N-mode ordinary differential system is stable. In
such a region the midpoint (leap-frog) solution of the N-mode ordinary differential
system should match the appropriate leap-frog solution of (1.1). Briggs e: o/
demonstrated, however, that the leap-frog solution of {1.1) containing N Fourier
modes is unstable to nonlinear interactions with Fourier modes which are side-
bands in wavenumber space to the N primary modes. The side-band modes, which
cannot be represented by the discretised N-mode ordinary difference system, are
triggered by roundoff errors in the leap-frog discretisation of {1.1). The side-band
modes are then amplified by nonlinear interactions and the instability appears as a
distortion of the envelope of the N primary modes. This distortion develops and
eventually the numerical solution becomes unbounded. Numerical results of Briggs
er al. show the instabilities for N=2 and N = 3. The authors used Fourier analysis
of the numerical solution to illustrate the initial growth of certain side-band modes
and they have derived envelope equations which purport to describe the initial
growth in amplitude of the envelope modulation. Suggestions have been made by
the authors concerning steps which might be taken to inhibit the nonlinear
instabilities.

In this note we consider the stability of leap-frog solutions which contain one or
two primary modes. Stability of the one-mode ordinary differential system is
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examined and appropriate comparisons are made with the early work by Fornberg
[4] on this one-mode case. Linear equations are derived which describe the first
order interactions of side-bands, and numerical results show the envelope
modulations produced by the side-band growth. Numerical experiments show that
the growth rate of a side-band mode varies with the separation, in wave number
space, between the side-band and the primary mode. The experiments suggest that
there is a maximum growth rate associated with a  particular value of this
separation. A simplified analysis of the side-band equations indicates that there is a
cut-off value in the wave number separation: if the gap between the primary mode
and the side-band exceeds this cut-off then the side band will not grow as time
evolves. Finally it is shown that side-band growth does not occur if (1.1) is
integrated using a discretisation which conserves energy.

2. DIFFeRENCE EQUATIONS AND N-MODE EQUATIONS

2.1. Difference Equations
Following Briggs et al. [3] we consider the equation

u,+ (' +U)u,=0 (2.1)

in a perturbation u'(x, ¢t) about a constant solution u=U (U>0) of (1.1). We
assume that u'(x, 1) satisfies the periodicity condition

uix+1,t)=u'(x, 1) (2.2)

and we examine numerical solutions on a discretisation of the region D= {(x, t):
0<x<1, t>0} using a time step k and a space step = 1/J, where J is an even
integer. The approximation U7} to u'(jh, nk) is formed using the leap-frog scheme

Y1+ [(L=0)yU; +al[Ur, — Uy 1=0,

Jji—1

0y
[]},+1 _ Ujr]‘l _*___’)_ [(Ulr_1+l)2__ (U’?
(2.3)

where y=k/h, a =yU and the real parameter 6 satisfies the constraint 0 <0< 1.
Scheme (2.3) is used for 1<;<J, n=1, and the periodicity condition is incor-
porated in the form

Un+t=pn+t, Untl=pynt (2.4)

J+1
Briggs er al. noted that (2.3) and (2.4) satisfy the invariance condition

J J
Z []-;_1+l_,= Z U}Ifl, n}l’ (25)

Jj=1 Jj=1
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for any 8 e R and the additional condition

J
Y UrU+! = constant, nz=0, (2.
j=1

(&%)
N

"

for the choice § = 3. This latter condition led the authors to assume the value 6 =3
in all computations using (2.3) and they also set y =1 to reduce the seiection of
parameters.

[t is readily shown that U} =" exp(2rijp/J), 0< p<J/2, is a stable solution of
the linear portion of (2.3) if

a < [sin(2np/N)] ™' =,

i

In this case ¢” may be written as exp( —ing) and ¢ € B assumes one of the values

asin{2np/J) ]

, — . =m—¢y. (2.7
J (1= sin*(2ap/J))

¢, = arctan [

The existence of two values of ¢ is associated with the two-step time discretisation
and it is readily shown that the ¢, mode converges to the differential solution as
h—0 (J— =, p constant). A plot of «, against p produces the neutral stability
curve in the (p, ») plane and the location of the minimum on the curve shows that
the mode with wavelength 44, corresponding to p = J;4, is the least stable mode in
the linear problem. This mode, and therefore every mode, is stable if a < 1. This is
effectively the von Neumann stability condition for the linear problem.

2.2. N-Mode Equations for N=1,2

The semi-discrete form of (2.1) may be written as

6 , . R 1
,"FI/; [(L'r/'+l)-_((/'j—l)_] +'7Z

“

U [(1-0)U,+ UL, — U, 1=0. 28}
where U () is an approximation to «'(jh, 1) and the dot denotes differentiation with
respect to r. [t is readily shown that (2.8) has a solution of the form

U,(1)= A(r) exp(2mij/3) + A*(t) exp(—2mij/3) (2.9}
provided A(¢) and its complex conjugate A4*(r) satisfy

A(t)=l\/3 (2 - 30) 4*(1). (2,10}

i \/"/3 U
+ 4h

2h

A(t)

A leap-frog discretisation of (2.10) yields the ordinary difference equation

—

NE
A(n+ 1) — A(n = 1)+ i /3u A(n) =l—\;—y(2 —38) 4%¥(n), (2.11)
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where A4(n) is an approximation to A(z) at ¢t = nk. This is the 1-mode equation given
by Briggs et al. [3]. The existence of the 1-mode solution derives from the fact that
spatial modes of the form exp(+4nij/3) produced by the quadratic nonlinearity are
indistinguishable from exp(F2=ij/3), respectively, due to the aliasing property.
Note that the 1-mode system is linear if 6 = 2/3.

Equation (2.8) has a solution of the form

Uj(t)= A(t) exp(nij/2) + A*(r) exp(—7ij/2) + B(¢) exp(nij), (2.12)

J

provided the complex function A(t) and the real function B(r) satisfy
. iu i .
A1)+~ A1) =7 (1-20) 4¥(1) B1) (2.13a)
and
Bu)=é(9—1[Azny—A*%n]. {2.13b)

A leap-frog discretisation of (2.13) yields
Aln+1)— A(n—1)+ 2aA(n) = i2y(1 —20) A*{n) B(n), (2.14a)
and
Bn+1)—Bn—1)=2y0—1)[A*(n)— A**(n)], (2.14b)

which is the 2-mode system given by Briggs ef al. [3]. Note that the 2-mode system
is linear if 8 = 1. There is no value of 8 which gives linearisation for N > 2.

3. STABILITY OF N-MODE EQUATIONS

We are interested in examining nonlinear instabilities of (2.3) and (2.4) in regions
of parameter space in which the N-mode ordinary difference equations (2.11) and
(2.14}) are stable. To this end we obtain the nonlinear stability threshold of the N-
mode equations. In the case of the 1-mode system a precise description of the non-
linear stability limit may be obtained for the differential equation (2.10). If 4(r)=
X(t)+iY(z), with X and Y real, Eq. (2.10) may be written as

X=LY+2MXY

. 3.1
Y=—LX+MX* -1, G-

where L=(./3/2)(U/h) and M= (\/5/4}1)(2-36). If M#0 system (3.1) has
singular points at (0, 0), (L/M, 0), (—L/2M, +./3L/2M) on the (X, Y) plane. It is
readily shown that the singular point at the origin is a centre and that the other
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Fig. 1. Stability of I-mode system. (a). (b) Integral curve patterns for M >0 and M <0.

singular points are saddle points. The integral curve patterns for M >0 and M <0
are shown in Figs.la and b, respectively. The lines X= —L/2M and
X+ ./3Y=L/M which form triangle PQR are integral curves of (3.1). The figures
show that the solution of (3.1) or (2.10) will remain bounded for all >0 if the
initial point is inside triangle PQR. In theory a solution will also remain bounded if
the initial point is on the triangle boundary, or on those extensions of the boundary
lines on which the arrow-heads are directed towards the triangle. Infinitesimal per-
turbations of these solutions are unstable and we therefore discard such initiai
points. The stability region of (3.1) or (2.10) is the interior of triangle POR in
Fig. 1. Note that the region covers the complete (X, Y) plane if 0 =2

Before considering the discrete I-mode equations it is of interest to compare the
analysis of (3.1) with results obtained by Fornberg [47 on instabilities in dis-
cretisations of (1.1) He considered perturbations about a zero state described by
initial data with nodal values {..,0, —x,k,0, —x,x,0,..}, where xs0. His
solutions may be generated by the l-mode equations above if we set X=0 and
assume U'=0. In this case the solution of (3.1) is

1
Y =)
and. if 0 # 3, this solution becomes unbounded at 1= — 1/MY(0) provided Y{0) is
chosen such that MY(0)<0.

If Fornberg’s initial data set is generalised to include perturbations about zero by
any data with spatial frequency 34 we have a system described by (3.1) with £ =0.
If 0 # 3 this system has one singular point at (0, 0) and the integral curves satisfy
the equation

X(X*—3Y?)=constant.
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FiG. 2. Stability of 1-mode system. Integral curve pattern for L=0, M >0.

Figure 2 shows the solution trajectories if A/ >0. The case M <0 is obtained by
reversing the arrow-heads on the trajectories. Fornberg’s solution from the initial
data set {.., —k, k,0, —k, i, 0,...} is described by the trajectory on X'=0 in Fig. 2.
If <2 then M >0 and the solution with ¥(0) <0 becomes unbounded in a finite
time. This solution is represented by the trajectory X =0, ¥ <0 in Fig. 2 and it is
readily shown to be the solution from the above initial data set with x <0. Note
that the trajectory X =0, ¥ <0 takes the shortest path to infinity, suggesting that
this might be the least stable 1-mode solution. Similarly we note that if 6> 3 then
M <0 and the trajectory which moves directly to infinity is represented by X'=0,
¥>0. This is the solution which arises from the Fornberg data set with x> 0.

Leap-frog instabilities associated with U=0 have also been examined by
Trefethen [9] and Vadillo and Sanz-Serna [ 10]. Trefethen has shown by numerical
experimentation that a local sign change of the form U;>0, U;,, <0 is amplified
catastrophically if @ < 2, and that a sign change U; <0, U, ,, >0 is amplified—albeit
less severely—if 6 > 3. Sign changes of this type arise from the Fornberg data set
with k¥ <0 and « > 0, respectively, and U,= — k. Vadillo and Sanz-Serna [10] have
shown that for 8 =0 the least stable solution of the fully discrete leap-frog equation
is a solution of the form U,=«, U, ,= —«, U;=01if j#/, [+ 1: here [ is a positive
integer and x is a positive real number. Vadillo and Sanz-Serna have conducted
numerical experiments to support their analysis.

The work cited in the two preceding paragraphs deals with instabilities associated
with perturbations about the zero solution. If U #0 and perturbations are not too
large then local sign changes do not occur and the solutions are more stable. The
interesting work by Briggs, Newell and Sarie [3] on nonlinear focusing describes a
mechanism which might lead to the destabilisation of “stable” solutions when
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TABLE 1
Stability Threshold for the 1-Mode Difference Equation with y =1 and 6 =0

o 0 01 02 03 04 05 06 07 08 09 1.0
E 0 010 010 020 025 030 030 030 030 020 0

U # 0. Henceforth we confine our attention to the case U5 0, and our aim is to add
to the work by Briggs et al.

For the case U #0 the integral curve patterns in Fig. 1 for the I-mode differential
equation offer some guidance concerning the stability region for the nonlinear dif-
ference equation (2.11). A requirement for stability is that the discrete
approximations A(0), A(1), 4(2),.. should remain inside triangle POR in Fig. !. To
determine the stability threshold, however, we solved (2.11) with y=1 and =10
using starting values 4(0)=A(1)=0(1+{), where ¢ is a positive constant and
{,0) is in triangle PQR. 8 =0 was chosen as the value of # which minimises the
area of the stability region POR. It follows from (2.9} that the nodal values of the
perturbation are

tUG(0), Uy(0),..} =0{2, —(/3+ 1), (/3—1), 2.} 3.3
The maximum norm of this data set is
E=o(y3+1) (3.3)

and we employ E as a parameterisation of the initial perturbation energy. To obtain
the stability limit for a particular value of o, Eq. (2.11) was integrated using increas-
ing values of E until we found the maximum E at which the solution remained
bounded over 2x 10? integration steps. Table gives the stability threshold
obtained in this way. E was increased in increments of 0.05. and a non-zero entry
such as 0.20 indicates that the stability threshold is in the interval (0.20, 0.25). The
zero values at x =0 and a =1 are precise: the value x =0 has been dealt with in the
discussion of Fig. 2, and a =1 is the linear stability limit. As one might expect, the
choice of starting value 4(1) has some effect on the stability threshold for the dis-
crete problem. One of the solutions of the linear part of (2.11) could be used w0
determine A(1). With A(1)= A(0) exp(—i¢), and ¢ given by (2.7), we found with
2=0.9, for example, that the threshold value is slightly increased for ¢ =¢, and
slightly decreased for ¢ = ¢,.

To determine the stability threshold for the 2-mode problem we solved (2.14}
with y= 1 and @ =4 using starting values A(0)= A(1)=0c(l +1i), B0)=B(l}=0.
where ¢ is a positive constant. This data set was used by Briggs ef al. [3] for the 2-
mode problem. In this case Eq. (2.12) gives the nodal values of the initial pertur-
bation as

{Uo(0), Uy(0),..} =03, =3, —1, 1,3, —3,.} (3.4)
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TABLE II
Stability Threshold for the 2-Mode Difference Equation with y=1 and 0 =2

o 0 01 02 03 04 05 06 07 08 09 1.0
E 0 090 145 165 170 125 115 L15 080 040 0

and the perturbation energy may be measured by
E=30. (3.5)

The threshold values given in Table II were computed as for the 1-mode problem
with E once more increased in increments of 0.05. As for the 1-mode system, the
threshold values are marginally altered if 4(1) and B(l) are evaluated using
solutions of the linear part of (2.14).

4. SIDE-BAND EQUATIONS

Consider a solution of the semi-discrete equation (2.8) represented by the 1-mode
system (2.9). The solution may be considered to be the analogue of a periodic
wavetrain in deep water with fundamental wave number 2rnJ/3. In this discrete
system the higher harmonics in the wavetrain are reflected into the fundamental by
the aliasing property. Suppose the solution is perturbed by the presence of Fourier
components with wave number close to the fundamental of the form (2n/3+ ) J,
where §J=2nu and u is typically a small positive integer. The side-bands are con-
veniently represented by

a+(t) e“”*‘s’j—ka’i(t) e""”*‘s”,

where p =2n/3, and |a, (0)/A4(0)] is assumed to be sufficiently small to permit the
neglect of squares and higher powers of a, (¢} for some initial period of time.
Quadratic interactions between the term in a,(z) and the fundamental terms in
(2.9) give rise to first order terms with spatial distributions of the form % *2/ =
e~ 27 =3 and ¥, In this context a first order term is a term containing first powers
of small quantities such as a, (7). An examination of all possible interactions
between the fundamental terms and the side-bands reveals that the solution con-
taining all fundamental and first order terms may be written as

— ipf * , —ipf ip—06)J % ,—ilp~3)j ip+d)j
U=Ade"+ A% " +a_e +a*e +a,e
+a* e P 4 pel 4 hre Y, (4.1)

The argument ¢ has been omitted from the coefficients in (4.1) for notational con-
venience. Note here that an upper side-band containing ¢” * % interacts with the
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fundamental mode to produce a lower side-band term containing ¢ ~"#~°"/_ This
interaction between upper and lower side-bands through the fundamental mode
arises from the aliasing property, and it is not produced by the quadratic non-
linearity uu, in a periodic wavetrain. In a periodic wavetrain the upper and lower
side-bands of the first harmonic interact through the second harmonic [ ].

If we substitute (4.1) into (2.8), ignore squares of small terms such as a, {(¢). and
use a discrete orthogonality condition on the spatial components, we obtain the dif-
ferential system

Uisi s _
L isin{p o)a7+(1 0)
h h

i . . . . .
[Ab*(sin p —sin §) — A*a* (sin p +sin(p + &1} ]
& .

+ﬁ sin(p — 0)(Ab* + A*a% ) =0,

Uisin {p +9) (1—6)i
a, + p a,+—

[Ab(sin p +sin &) — A*a* (sin p +sin{p — )} ]

0 .
+—1151n(p+0)(Ab+A*a*i)=0,

/
Uisin 8 (1—0)i . . . . . .
+ P b+ p [Aa* (sin p —sin{p —J)) — A*a, (sin p —sin(p + 5)}}]
0i .
+Zsm ofda* + A*a )=0. {4.2)

in a.ll. I-mode computations we set § =0, this being the value which minimises the
stability region POR in Fig. 1. In this case the side-band differential system is

a_+iF(8)a_+i(K(3) Ab* — M(8) A*a* )=0,
d.+iF(—d8)a, +i(K(—38) Ab— M(—3) A*a* ) =0, (4.3)
b4 iL(3) b+ i(N(8) Aa* — N(—3) A*a_)=0.

where
fsr e U Ao st 5 YN
{ )27(\/3cosb+sm0}, K(0)=- ——smo),
2h A\ 2
. I = = c . 1 = = .
[v[(é):?—h(\/SwL\/gcos0~sm0}, N(()):ﬁ(\ﬂ—\f& cos & —sin &)
and

L(5)=%sin 0.

SL67 2-10
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The fundamental coefficient, A(z), is altered by quadratic terms in the side-band
coefficients and, if such terms are neglected, A(7) is given by equation (2.10). Note
also that quadratic terms introduce additional Fourier modes with wave numbers
such as (27/3 +29)J. If some mechanism permits a_,a, and b to grow until
squares of these terms are significant then A(z) is affected and energy will be trans-
ferred to additional Fourier modes. This process of energy cascade will be repeated
and additional modes will be stimulated.

Before we consider the system (4.3) in more detail a simple interpretation should
be given of the effect of the side-bands on the fundamental solution. If we ignore the
coefficient b(z) in (4.1) the solution at a given value of ¢ is

U,=2Re[e?(A+a,e¥+a_e )],
where Re denotes the real part. This may be written as

U,=2{[X+ F(j)] cos(2mj/3) — [ Y+ %(;)] sin(2mj/3)}, (4.4)
where A =X +iY and #(j) and %(j) are first order linear combinations of cos Jj
and sin &j. Since (/) and %(j) are periodic functions with period 2r/6J = 1/p it
follows that the side-bands introduce a modulation so that the constant envelope is
replaced by a periodic function with wavelength 1/u. Th reader is referred to the
text by Whitham [11] for a description of modulation theory applied to water
waves and nonlinear dispersive waves.

In an attempt to obtain a condition for the existence of growing solutions of the
semi-discrete system (4.3) we use an analysis based on a two-fold simplification of
the differential system. Suppose initially that A(z) is given by the linear part of
(2.10) as

A(t) = age ™", (4.5)

where a):w/i U/2h. This solution might be regarded as a circular trajectory
around the centre, within triangle POR, in Fig. 1. With this simplification (4.3)
becomes

a_ +iF(8)a_ +i(K(8) agh*e "™ — M(d) af a% ') =0,
a, +iF(—d)a, +i(K(—38)aghbe ™ — M(—8) afa* &) =0, (4.6)
b+ iL(8) b+ i(N(d) aga* e ™ — N(—d)afa, e™)=0.

To further simplify the system we set b(¢) to zero and obtain the equations
a_+iF(8)a_ —iM(6)afa* ¢ =0,

. (4.7)
a, +iF(=d)a, —iM(—d)aga* e =0,
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in a_ and a, . The elimination of a . from (4.7) yields

g +i[F8)—F(—d)—w]d_
— [M(8) M(—d)layl” — wF(8)— F(d) F{—35)Y]a_=0.

This equation has a solution of the form a_ =¢™ if and only if

AP+ [F8)—~ F(—8)—w] i+ [M(8) M(—8)|ay|” —wF(8)— F(8) F{~8)]=0.

and the condition for a growing solution is that the discriminant of this guadratic
be negative. The condition may be reduced to

(3—4n*)cos®d + (3—6n%)cos §+ L3 —8y7) <0, (4.8)

where 7 = [a,|/U. Since p=2n/3 and {p +J)< 7 we see that d <n/3 so cos o> 0.
The condition for the circular trajectory (4.5) to be inside triangle POR in Fig. 1 is
# <4 With these constraints imposed condition (4.8) cannot be satisfied and we
might conclude that the semi-discrete l-mode system does not permit side-band
growth of the type described above.

One might be suspicious of conclusions on side-band growth which have been
formulated in terms of the simplified model (4.7). To determine possible limitations
on the conclusions we examine the nature of the solution of system (4.6). We have
seen in (4.4) that modulation of the 1-mode system in space arises from the
presence of periodic functions with periods 3/ and 1;u. The solution also evolves in

i 3 1ot : " £ loc T nocostacia tha
disparity between the time scales consider the limiting form of (4.6) as # — 0 with u
fixed. In the limit the system becomes

a_ +ioa_ +iw(agb*e N~ 2aFa% ') =0,
. (4.9)
0

d++iwa++iw(aobeA»iml_z‘xgeaﬂiei(uljz

b+2iQb—iQada, e +agat e )=

3

where = ay/U, 0= /3 Ui2h and Q=nuU. Since > | we may introduce fast
and slow time scales

T=wt and T=2£1
and expand a, and b as

a, =aQ(T, 1)+ O(h), b=b""T, 1)+ O(h).

The governing equations for the leading terms in the expansions are readily
obtained using the method of multiple scales. The equation in 5 is #6/8T =0,
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and if we drop the superscripts on a'® and 5°’ we may write the equations in ¢'®
and a'® as

a_ +ia_+i(agh*e T —2aka* ") =0,
G, +ia, +i(agbe T —-2aka* e'T)=0,

where the dot denotes differentiation with respect to T and b = b(7). The solution of
this system is

3ugh* . aib*

a = C i/‘,lT+ C iraT 2iT
(1) e J(T)e +4'a0'2 2, »
(1+4,) (L4 2y) C3ugh . ab
a., = C* el/.2T+ C:k inT . —iT 2iT
+ 2u, r) 201, 2(r)e +4|a0|‘ 2a, €

where C,(r) and C,(t) are arbitrary functions and A,,=+[14 (9 — 16]ag|?)" 2]
Note that the roots of the quadratic equation which yielded (4.8) have the limiting
values wl, and wi, as & — 0.

The solution shows that b(#) varies on the slow time scale whereas a (¢) oscillate
on the fast time scale and they are modulated on the slow time scale with
modulations determined by C,(z) and C,(t). Instability will not develop on the
slow time scale if C,() and C,(t) remain bounded as t evolves. This suggests that
the approximation b(r)=0 in (4.7), which removes the slow time scale, will not
detect any slowly developing modulational instability. Equations for C(r) and
C,(t) are produced by the removal of secular terms from the equations which
govern the next terms in the expansions of ¢, (T, ) and b(T. 7). Rather than solve
for C,, we computed accurate numerical solutions of the side-band equations. In
checking numerically for modulational instability care has to be taken to integrate
over a sufficiently large range of the slow time scale. The third equation in (4.9)
suggests that the slow variation of » is a periodic variation in the variable ¢ with
period n/Q or 1/uU. It is therefore essential to integrate over several multiples of
1/uU. Note also that ih order to construct an accurate representation of the
solution it is essential to compute the solution at several points within each cycle of
the fast time scale oscillation.

We integrated system (4.6) with 6 and o defined by the parameter values J =120,
u=23and U=09. It is readily shown that for this set of values inequality (4.8) is
satisfied if |ao| > 0.672, and with a,=o(1 + )= E(1 +i)/(1 + /3) this suggests that
growth will occur if E> 1.3. System (4.6) was integrated from r=0to t=34 by a
Runge-Kutta-Merson method using different values of E and with initial con-
ditions a, =0.5x107°x (1 +{), a_=5b=0. The numerical experiments indicated
that |a | did not grow unboundedly in time unless E exceeded 1.3. If £=1.3 the
maximum value of |a,| over the interval 0<s< 3.4 is of the order 10~% and if
FE =1.32 the maximum value of |a, | has reached 10*® at 7= 1.5. Figure 3 shows the
evolution in time of the real parts of @ and b with J, p and U as given above and
with £=0.2. The diagram clearly shows the fast and slow time variations of ¢ _ and



ad
GO
A

NONLINEAR INSTABILITIES IN LEAP-FROG

p———

04
0

)l

S

\
_ Fc 10
|
|

|
l
|
|
|
|

|
JM i

FIG. 3. Variation of real parts of @, and b with time given by the accurate solurion of svstem (3.6}
with E=0.2, J=120, y=3 and U=009.

)

b, respectively. The numerical experiments suggest that, at least for the selected
parameter set, the solution of (4.6) does not grow unboundedly if (4.8) is not
satisfied.

To confirm that the complete semi-discrete 1-mode system (4.3) does not permit
side-band growth if A(¢) is within triangle PQR in Fig. 1 the system was integrated
numerically with /=120, p=3, U=0.9 and 4(0) = E(1 +7)/{1 + .3). This value of
A(0) is within triangle PQR provided E < U. Using initial values ona_,a, and b
as described in the preceding paragraph we found no growth in the maximum value
of |a,| over the interval 0<r<34 provided E<09. At £=09, however, the
solution grows rapidly with time. The numerical experiments suggest that the semi-
discrete 1-mode system does not permit side-band growth.

We now consider the discretisation of the side-band equations by the midpoint
rule. If the side-band modes are small then the solution of (4.3} by this dis-
cretisation could equally be obtained by Fourier decomposition of appropriate
leap-frog solutions of (2.1). If b(r) is set to zero, as in {4.7), the midpoint dis-
cretisation of (4.3) gives

dga_(ny+iF(0)a_(n)—iM(8) A*(n)a* (n)=0,

. {4.10)
doa, () +iF(—d0)Ya, (n)—iM(—8) A*(n)a* (n)=0,
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where dga_(n)=[a_(n+1)—a_(n—1)]/2k. If A(n) is assumed to be one of the
solutions of the linear part of (2.11) then

A(n)=age =", (4.11)

where ¢ is ¢, or ¢, in (2.7), with p set to J/3. Tt is possible to eliminate A(n) and
a, (n) from Eq. (4.10) and (4.11). The elimination process makes use of the identity

AoLe"a (1)) =" [cos ¢ dya () + sin ¢ Ca(m)],

where {a* (n)) denotes [ a* (n+ 1)+ a*(rn—1)]. The final result is amenable to
simple analysis if {a* (n)) is replaced by «* (n) in this identity and, with this sim-
plification incorporated, the final difference equation in a _(n) is

Ala_(n)+iH# dga_(n)—Ha_(n)=0,

where # = F(8) —cos ¢ F(—8)— (1/k)sin ¢ and A =cos ¢ M(5) M(—6)|ay)* —
(1/k) sin ¢ F(0)—cos ¢ F(3) F(—48). This equation has a solution of the form
a_(n)=r"if and only if

O+ 2k HE— kA =0, (4.12)

where {=r—r~ L. If ¢ is identified with ¢, in (2.7), and y = k/h = 1, the coefficients
in (4.12) are given by

2Ue# =al(1—g) /3 cos 5+ (1 +¢)sind— /3]
and
4k’ A = —a’{3 cos § + V/E sin & + g[4 cos®5 — 1 —n*(2 + 6 cos 6 + 4 cos?5) ]},

where ¢ =./(1 — 32%) and 1= |a,|/e. When ¢ is identified with ¢, in (2.7) then g is
replaced by —g¢ in the expressions for s# and %"

The discussion following (4.8) indicates that ¢ < /3 and that E should be selec-
ted so that the unperturbed system is stable. Accordingly, we evaluated the four
roots of (4.12) for =09, la,/=0.1 and 6=0(n/15)n/3. This value of |a,|
corresponds to a value of E just below the stability limit given in Table I. With
¢ =¢, the largest root of (4.12) has modulus 2.02, 1.83, 1.57, 1.04, I, 1 at 6=
0(n/15) n/3 and with ¢ = ¢, the largest root has modulus 1 for all values of é. The
existence of roots » of (4.12) with [r| > 1 suggests that the fully discrete system may
exhibit side-band growth at values of « and E for which solutions of (2.11) are
stable.

To check the effect of the aproximation b(¢) =0 in (4.10) the system (4.6) in a
and b was integrated using the midpoint rule with y=k/h= 1. Experiments were
performed with J=120, U=09, a,=E(1+i)/(1+./3) and with conditions at
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FiG. 4. Variation of real parts of ¢, and b with time given by the midpoint rule solution of system
{(4.6) with E=0.15, J=120, p=3, y=1and U'=09.

n=0.1 defined by a, =05x107°(1 +i), a_ =b=0. Rapidly growing solutions
were found for ¢ =¢, and ¢ = ¢, at values of E below the stability Limit given by
Table I. For example, Fig. 4 shows the evolution in time of the real parts of ¢, and
b with p=3 and E=0.15. The solution is shown for 150 time steps and it is scaled
50 that the maximum amplitude is unity. Over 150 time steps the value of |a_ |
increases to 4.0. Figure 4 shows the fast variation in ¢, and the slow variation in 5.
The plot of @, suggests a growth on the fast time scale.

Experiments were also performed on the midpoint rule discretisation of the com-
plete I-mode system (4.3). With E below the stability limit of Table I the compiete
system exhibits side-band growth. Numerical results indicate that the initial rate of
growth of |a, | varies with u and that the growth rate is greatest when p=J/6, or
6=m/3. It is of interest to note that Benjamin and Feir [2] obtained results of this
type in their analysis of wavetrain instabilities in deep water.

In the case of the 2-mode system the solution containing all fundamental and first
order terms may be written as

_ inji2 inj A2 — 6y qm2+d17
U=A4e™"+Be™ ta_e +a,e

+b_e"m 0V L de 4 ¢, {4.13}



388 SLOAN AND MITCHELL

where c.c. denotes the complex conjugates of the termsin 4, a_,a,,b _ and d. As
before, 6/ = 2mp, and p is typically a small positive integer. The differential system
in the side-band coefficients is readily shown to be

4 +Uicosé +(1—9)i
_ - ;

[—cosd Ba% +(sind—1)(A*h_ — Ad*)]

0i cos o
h

[Ba* + A*b_ + Ad*]=0,

Uicos (1-06)i
+

Gttty

[ —cos & Ba* + (sin § + 1)(Ad — A*b* )]

Bicos o
h

[Ba* + A*b* + Ad] =0,

b

b
b

Ui sin & 1—0)i
isino, h)’[—sinaBd*+(cosa+1)(Aa,—A*at)]

Oisin 6

[Bd* + A*a* + Aa_]=0,

Uising = (1—0)i

d+ p d+ ; [ —sin & Bb* + (cos 6 — 1) (A*a, — Aa*)]
1
8i sin &
; [Bb* + A*a, + Aa* ] =0. (4.14)
1
Ta all2 mods nmv\-\fl‘:f:/\v\n sxrza oot ) 2 and tha cida band anvatinne (A 14 ~ea

modified accordingly. The presence of the side-bands introduces a modulation of
wavelength 27/6J = 1/u. As before, the fundamental coefficients are not affected by
first order terms in the side-band coefficients. If squares of these coefficients become
significant then the fundamental coefficients are influenced and additional Fourier
modes are stimulated.

Rather than impose severe simplifications on the 2-mode system (4.14) we
attempted to investigate growth properties by means of numerical experiments. An
accurate numerical solution was obtained with J =120, y =3 and U =0.9. Values of
dependent variables at r=0 were given by A=E(1+i)/3, B=E/3, a,=
05x107°x(1+41i), a_=b_=d=0. There was no noticeable growth in the
maximum value of |a | over the interval 0 <7< 2.9 for E < 1.0. The system (4.14)
was also integrated using the midpoint rule with y=1 and with the above initial
conditions imposed at n=0, 1. The fully discrete solution exhibited side-band
growth at values of E below the stability limit given in Table I[I. At £=0.4, for
example, |a . (n)| reaches 10** over 180 time steps. As in the 1-mode case the initial
growth rate varies with y and the growth appears to be greatest around u = J/10.
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5. NUMERICAL RESULTS WITH THE PARTIAL DIFFERENCE EQUATIONS

The relation between instabilities and side-band growth was examined using
numerical integrations of the partial difference equations (2.3) and (2.4) for the
{-mode and 2-mode systems. The 1-mode system involved parameter values 6 =0,
y=1, «=0.9 and E was chosen to satisfy £<0.2 as dictated by the threshold
results of Table I. J has to be a multiple of 3 to permit the periodicity condition,
and the selected values of J were also even integers. Initial conditions are given by
(3.2} with side-band disturbances added as required. For example, to stimulate
mode number p, 0 < p < J/2, we added

hn

ce>m P | o* e 2m0P = Del cos(2mjp/J) — sin(2mjp/J) ] (5.1)
to node j for j=0, 1,.., where ¢ =¢(1 +17) and ¢ is a small positive number. At time
step # in the integration process the Fourier coefficient associated with a typical

mode s 13 given by the transformation

17-1 o , |
Uls, nk)=} S o Ure ™9 |s|<Ji2,5# ~J)2 {

i=0

W
[

The 2-mode system involved parameter values 8 =3 y=1, =09 and E<04. In
this case J was chosen to be a multiple of 4.

The side-band modes a, in (4.1) and (4.13) were stimulated using (5.1}, with
p=J3+u and p=J/4+pu in the l-mode and 2-mode systems, respectively.
Numerical experiments show that in each case the side-band growth is a function of
p/d. For example, in the l-mode system with ¢ fixed, the evolution of a, (1) for
u=22, J=288 matches that for p= 11, J= 144. Analogous properties hold for the
2-mode case. Experiments also show that side-bands do not grow if there is insuf-
ficient energy in the fundamental modes. For example, no growth was observed in
the 1-mode system with E=0.02.

Figures 5a—c show the solution profile for the 1-mode system at n= 100, 145, 153
with F=0.2, J=120, u=3 and &= 0.000005. Numerical results reveal that mode
numbers 3, 37, and 43 are immediately stimulated, as suggested by the anaiysis in
Section 4. The initial value of |a, (n)| is \/2 ¢, and the maximum value of |a_ (n)|
has increased to 0.084 at n=155. The graphs show the development of the
instability as the side-bands grow. There is a local focusing of the instability and lit-
tie evidence of the anticipated periodicity with wavelength 1/p =1 in the modulated
envelope. The growth rate of a_(n), a,(n) and b(n) (see (4.1)) was found to vary
with p, with an increase in growth rate as p increases from zero. The more rapid
growth rate at gy =10 is shown in Figs. 6a—c where the solution is given for r = 70,
90, and 92. This solution became unbounded before n reached 100.

A random number generator was used to stimulate all Fourier modes with ncise
of controllable amplitude. Stimulation of this type is provided by roundoff at an
amplitude determined by machine accuracy. With J=120, £=0.2 and noise of
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Fic. 5. Solution of 1-mode system with £=0.2, J=120, u=3 and ¢=0.5(—5). (a)}(c) Profiles at
n=100, 145, 155.
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0.5(—5). (ai-{c) Profilss at

120, p =10 and ¢

=02, J

FiG. 6. Solution of 1-mode system with E

n="7Q, 9¢, 92.
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maximum amplitude 0.5(—8) the greatest growth rate was observed in mode num-
bers 20 and 60. This observation agrees with the observations made in Section 4 on
the solution of (4.3) by the midpoint rule. There was no evidence of large growth
rates in modes close to the fundamental.

Figures 7a-c¢ show the solution for the 2-mode system at »n =30, 55, 70, with
E=04, J=120, p=13 and £=0.000005. In this case mode numbers 3, 27, 33, and
57 are immediately stimulated and their growth rates and magnitudes are com-
parable as n increases. Note the distinct modulation with wave length 1/y=1in the
2-mode case. The maximum growth rate appeared to be around p=10 when
J=120 and E=0.4. Figures 8a, b show the solution corresponding to u= 10 for
n =130 and »=155. This solution became unbounded before »n reached 70. In this
case the use of a random number generator produced clear evidence of maximum
growth rates in side-bands like those in (4.13), with u/J approximately equal to 0.1.
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FiG. 8. Solution of 2-mode system with E=04, =120, g =10 and & =0.5{ ~5). (a), (b) Profiles at
=130, 55. '
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This gives good agreement with the aforementioned observations, but it differs from
the observaions made by Briggs er al. [ 3] on the 2-mode system. With J = 300 they
found maximum growth rate in mode numbers 72 and 78 which corresponds to
1/ J=0.01. They used E=0.15 and at this value of £ we observed no side-band
growth over 2000 time steps.

6. COMMENTS

The analysis and numerical cxperiments show the relation between leap-frog
instabilities and Fourier side-band growth. The agreement between analysis and
experiment is #2® obvious in the 2-mode system. Variation of growth with p has
been demonstrated and reference is made to the existence of a maximum growth
rate at some p>0. Figure 7 shows the anticipated relation between side-band
growth and envelope modulation. Analysis and experiment show that side-band
growth is absent if there is insufficient energy in the fundamental modes. The
analysis suggests that the growth is related to the midpoint rule time discretisation.
To check this the semi-discrete system (2.8) was written as dU/dr= % (U) and
integrated usng the implicit method

U"+l—U":kf(_%(U"-l—U"+l))- (6.1)

If # =2 method (6.1) satisfies the conservation condition

J—1 J—1

> (U= % (0

j=0 i=0
The 2-mode system with E=04, J=120, u=3 and ¢=0.000005 was integrated
over 200 steps using (6.1). Throughout the integration there was no growth in
mode numbers 3, 27, 33, and 57. Briggs e al. [31 have made several suggestions
concerning the prevention of nonlinear instabilities of the type described in this
paper.

The work described here adds to the interesting ideas proposed by Newell [8]
and developed by Briggs, Newell and Sarie [3] on a mechanism which may lead to
destabilisation of “stable” difference solutions. The stable solutions considered con-
sist of isolated Fourier modes which are regarded as perturbations about a non-
zero, constant solution. The destabilisation process involves an accumulation of
energy by additional Fourier modes in situations where the overall energy is not
conserved. The work described in Section 5 shows that growing Fourier modes may
be stimulated using a random number generator, and this suggests that in a real
calculation over a long period of time the stimulation may be effected by roundoff
errors. The question which still has to be answered, of course, is whether roundoff
errors will stimulate growing Fourier modes when the basic solutions are more
general than those considered here. The answer to this question wiil only come
from more analysis and more numerical experimentation. If instabilities of the type
considered arise in practical calculations using leap-frog methods, then effective
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methods of suppressing the instabilities should be constructed. This will require a
better understanding of the mechanisms involved.
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